AQA Maths M2

Topic Questions from Papers

Centre of Mass

Answers

(Q2, June 2006)

(Q4, Jan 2007)

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
3 (a) \\
(b) \\
(c)
\end{tabular} \& \begin{tabular}{l}
Symmetry of the lamina about \(P Q\) \\
Taking moments about \(A B\) :
\[
\begin{aligned}
\& 600 \rho \times 15+100 \rho \times 35 \\
\& =700 \rho \bar{x} \\
\& \bar{x}=17.857=17.9 \mathrm{~cm}
\end{aligned}
\]
\[
\begin{aligned}
\tan \theta \& =\frac{10}{17.857} \\
\& =0.56
\end{aligned}
\] \\
Angle is \(29.2488 \ldots\)
\[
=29^{\circ}
\]
\end{tabular} \& \[
\begin{gathered}
\text { E1 } \\
\text { M1A1 } \\
\text { A1 } \\
\text { A1 } \\
\text { M1A1 } \\
\text { M1 } \\
\text { A1 }
\end{gathered}
\] \& 4

4 \& | Accept 'mirror line' |
| :--- |
| Condone lack of ρ |
| SC3 17.8 |
| M1 for use of $\tan \theta$ |

\hline \& Total \& \& 9 \&

\hline
\end{tabular}

(Q2, June 2007)

4	$\begin{aligned} \bar{X} & =\frac{25 \times 1+12 \times 4+4 \times 5}{1+4+5} \\ & =\frac{93}{10} \text { or } 9.3 \\ \bar{Y} & =\frac{10 \times 1+7 \times 4+18 \times 5}{10} \\ & =\frac{128}{10} \text { or } 12.8 \end{aligned}$ \therefore Centre of mass is at $(9.3,12.8)$	M1 A1 M1 A1	4	Two terms on top correct (+third) and denominator correct SC3 for interchanged \bar{X} and \bar{Y}
	Total		4	

(Q3, June 2008)

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
5 (a) \\
(b) \\
(c) \\
(d)
\end{tabular} \& \begin{tabular}{l}
Taking moments about \(A D\) : \\
5 cm
\[
\begin{aligned}
(\tan) \theta \& =\frac{1}{5} \text { ie } \frac{(\mathrm{a})-10}{(\mathrm{~b})} \\
\& =0.2
\end{aligned}
\] \\
Angle is \(\tan ^{-1}(0.2)\)
\[
=11.3^{\circ}
\] \\
Centre of mass is at middle of lamina
\end{tabular} \& \begin{tabular}{l}
M1A1 \\
A1 \\
B1 \\
M1 \\
A1ft \\
M1 \\
A1ft \\
E1
\end{tabular} \& 3
1

4 \& | M1 for moments and 1 term on left correct and 1 term on right |
| :--- |
| From areas; $\frac{1.4}{5} \Rightarrow \theta=15.6$ or 15.7 |

\hline \& Total \& \& 9 \&

\hline
\end{tabular}

6	$\bar{X}=\frac{3 \times 15+1 \times 7+6 \times 8+10 \times 12}{3+1+6+10}$	M1A1		M1 for at least 3 multiplication \& addition	
$=\frac{220}{20}$ or 11	A1				
$\bar{Y}=\frac{3 \times 6+1 \times 14+6 \times 7+10 \times 9}{20}$		M1A1			
$=\frac{164}{20}$ or 8.2	A1	6	SC 4 (10, 7.4) [omit lamina] ie: B2, B2		
	\therefore Centre of mass is at $(11,8.2)$				
		Total		$\mathbf{6}$	

(Q2, Jan 2010)

$7($ a $)$	Symmetry	E1	1	Only accept 'symmetry'
(b)	Moments about $B:$ $0.4 \times 4+0.1 \times 8=0.5 \times \bar{x}$	M1A1		M1 3 terms, 2 correct
$\bar{x}=\frac{2.4}{0.5}$ $=4.8 \mathrm{~cm}$	A1	3		
		Total		$\mathbf{4}$

8 (a) Moments about line $A D$:
$5 \times 30+4 \times 10=9 \times \bar{x}$
$\bar{x}=\frac{190}{9}$
$=21.1 \mathrm{~cm}$
(b) Moments about line $A B$:
$5 \times 15+4 \times 25=9 \times \bar{y}$
$\bar{y}=\frac{175}{9}$
$\bar{y}=19.4 \mathrm{~cm}$
A1
(c) $\tan \theta=\frac{80}{175}$ or $\frac{8.9}{19.4}$

$$
=0.4571
$$

Angle is $\tan ^{-1} 0.4571$

$$
=24.6^{\circ}
$$

(d) Moments about the line $P R$:
(or $A D$ or $B C$)
$30 m=4 \times 20$ or $9 \times \frac{80}{9}$
$m=\frac{8}{3}$
(e)
e)

Centre of mass is at middle of lamina
Total
A1
A1

A1

3

14
$4 \quad 65.4^{\circ} \Rightarrow \mathrm{M} 1 \mathrm{~A} 1$ only
M1 use of \tan
A1 use of 8.9 or $80(30-(a))$
Or 0.45876
M1 2 of 3 terms correct

If moments about $D C$; 10.6 found SC 2
M1 2 of 3 terms correct

元
C

9	$\begin{aligned} \bar{X} & =\frac{2 \times 9+3 \times 2+8 \times 3+7 \times 6}{2+3+8+7} \\ & =\frac{90}{20} \text { or } 4.5 \\ \bar{Y} & =\frac{2 \times 6+3 \times 4+8 \times 8+7 \times 11}{20} \\ & =\frac{165}{20} \text { or } 8.25 \end{aligned}$ \therefore Centre of mass is at $(4.5,8.25)$	M1 A1 M1 A1 A1F	5	M1: Expression for \bar{X} with no more than one error in the numerator and correct denominator. A1: Correct distance. Accept $\frac{9}{2}$ or $\frac{90}{20}$ or equivalent. M1: Expression for \bar{Y} with no more than one error in the numerator and correct denominator. A1: Correct distance. Accept $\frac{33}{4}$ or $\frac{165}{20}$ or equivalent A1: Correct coordinates; dependent on M1 M1 Do not accept $\frac{90}{20}$ etc at this stage. SC4: For final answer $(8.25,4.5)$ award 4 marks. Moments about $B,(2.5,4.25) \mathrm{SC} 2$
	Total		5	

10 (a)(i)	Moments about $A B$: $\begin{aligned} & 1.6 \times 4+0.4 \times 8=2 \times x \\ & x=4.8 \end{aligned}$ Distance is 4.8 cm	M1A1 A1	3	M1 for 2 terms correct
(ii)	Moments about $A D$: $\begin{aligned} & 1.6 \times 6+0.4 \times 12=2 \times y \\ & y=7.2 \end{aligned}$ Distance is 7.2 cm	M1A1 A1	3	M1 for 2 terms correct SC2+SC2 for (a)(i) and (a)(ii) reversed
(b)	Moments about A : $1.6 g \times 6+0.4 g \times 12=12 \times \mathrm{T}_{B}$	M1A1		M1 for 1 side of equation Or using above: moments about A $12 \times \mathrm{T}_{B}=7.2 \times 2 \mathrm{~g} \quad$ (ft for M marks)
	$\mathrm{T}_{B}=1.2 g=11.8 \mathrm{~N}$ Resolve vertically: $\mathrm{T}_{A}+\mathrm{T}_{B}=2 g$ $\mathrm{T}_{A}=0.8 g=7.84 \mathrm{~N}$	$\begin{gathered} \mathrm{A} 1 \\ \mathrm{M} 1 \\ \mathrm{~A} 1 \end{gathered}$	5	1.2 and 0.8 is zero marks If 11.8 and 7.8 as final answer, must lose 1 mark somewhere
	Total		11	

(Q3, June 2012)

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
11 (a) \\
(b) \\
(c)
\end{tabular} \& \begin{tabular}{l}
Symmetry \\
Moments about \(A B\) :
\[
\begin{aligned}
\& 300 \sigma .15+100 \sigma .5+300 \sigma .15=700 \sigma . x \\
\& x=\frac{9500}{700} \\
\&=\frac{95}{7} \text { or } 13.6 \mathrm{~cm}
\end{aligned}
\] \\
Distance from \(H G\) is 16.4 cm
\[
\begin{aligned}
\tan \theta \& =\frac{15}{16.42857} \\
\& =0.913043 \\
\theta \& =42.3974^{\circ} \\
\theta \& =42^{\circ}
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
M1A1 \\
A1 \\
B1 \\
M1 \\
A1 \\
A1
\end{tabular} \& 1

3

4 \& | (condone lack of σ) |
| :--- |
| M1 needs correct total marks |
| Seeing both $15,16.4$ and \tan |
| [48° probably B1, M1] NB $\frac{13.6}{15}$ etc $\Rightarrow 42^{\circ}$ no marks |

\hline \& Total \& \& 8 \&

\hline
\end{tabular}

